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Abstract

Nano-plasticity of thin single-wall carbon nanotubes under uniaxial com-

pression is investigated through generalized tight-binding molecular dynamics

(GTBMD) and ab-initio electronic structure methods. A novel mechanism of

nano-plasticity of carbon nanotubes under uniaxial compression is observed

in which bonding geometry collapses from a graphitic (sp 2) to a localized di-

amond like (sp 3) reconstruction. The computed critical stress (_ 153 G Pa)

and the shape of the resulting plastic deformation is in good agreement with

recent experimental observation of collapse and fracture of compressed carbon

nanotubes in polymer composites.
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I. INTRODUCTION

The discovery of carbon nanotubes (CNTs) by Iijima, [1,2] and subsequent observations

of CNT's unique mechanical and electronic properties have initiated intensive research on

these quasi-one dimensional structures. CNTs have been identified as one of the most

promising building blocks for future development of functional nano-structures. Accurate

characterization of nano-mechanics in the elastic and plastic regimes, however, is highly

desirable for any application in nano-composites and/or devices. As external stress is applied

to nanotubes, initial linear elastic deformations are observed up to a certain critical strain

beyond which nonlinear responses set in. In the non-linear response regime, locally deformed

structures such as pinches, kinks and buckles have been observed in both experiments and

simulations. [3-12]

Specifically, classical molecular dynamics (MD) simulations, employing Tersoff-Brenner

many-body atomistic interactions, [13,14] have been performed for CNTs under tensile and

compressive stresses. [7,9] Both single and multi-walled CNTs are shown to be extremely

elastic, well beyond the typical yield strain of 0.1% for most other materials. Surprisingly,

compressed CNTs in the non-linear elastic response regime are also shown to completely

recover from severe structural deformations such as localized pinches and kinks. [7,9,12] It

is predicted, therefore, that the elastic limit of these materials would be extremely high.

Under tensile strain, a plastic response behavior primarily driven by Stone-\Vales (SW)

bond rotation defects, [17] that generate pentagon-heptagon (5/7) pair defects in a graphene

lattice, has been proposed. [15,16] It is suggested that the axially compressed CNTs would

also behave similarly and deform plastically via SW defect formation mechanism. [15] The

classical MD simulations of compressed nanotubes performed so far, however, show only

completely elastic deformation up to 15% and higher strain for similar tubes. [7,12,9] In

these simulations, CNTs behave as elastic rods that pinch and buckle locally into a variety

of morphological patterns that were predicted in a continuum mechanics based shell model

description of the nano-mechanics. [7]



In a recent experiment, large compressive strains were applied to CNTs dispersed in

composite polymeric films. Two distinct deformation modes; sideways buckling of thick

tubes, and collapse/fracture of thin tubes without any buckling, have been observed. [18]

The buckling of thick tubes is in qualitative agreement with the classical MD simulation and

shell model predictions of Yakobson et. al. [7]. The plastic collapse or fracture of thin tubes

without any buckling, however, is contrary to the classical MD simulation results known so

far. [7,15,9] The compressive strain in the experiment is estimated to be larger than 5%, and

critical stress for inward collapse or fracture is expected to be 100-150 G Pa for thin tubes.

[181

In this Letter, we investigate the plasticity of compressed nanotubes using quantum

generalized tight-binding molecular dynamics (GTBMD) and ab initio electronic structure

methods. We report collapse and plasticity of compressed thin nanotubes via graphitic (sp 2)

to diamond (sp 3) like bonding reconstruction at the location of the collapse, that is driven

by the relaxation of the accumulated strain energy in the uncollapsed section of the tube.

The nature of the collapse is in qualitative agreement with the experimental observation of

Lourie et. al. and the estimated critical stress (_ 153 G Pa) is also within the experimentally

predicted range. [18]

The molecular dynamics simulations of the compression of nanotubes are performed with

a quantum GTBMD method of Menon and Subbaswamy [20] that makes explicit use of the

non-orthogonality of the orbitals in treating interactions in covalent systems. The method

has been found to be very reliable in obtaining good agreement with experimental results

for the structural and vibrational properties of fullerenes and nanotubes. [20,21] Equilibrium

geometries for small carbon clusters obtained by the GTBMD method [22] are also in good

agreement with ab initio results. [23]

The axial compression of an (8,0) CNT is achieved by" keeping the edge atoms of the tube

transparent to the forces generated in the GTBMD method. The positions of the edge atoms

are moved axially inward at a fixed rate to compress the nanotube. Each 1% compression

in the linear response regime, and 0.25% compression near elastic limit, is accompanied by



GTBMD relaxation of 800 steps. Keeping the strained atoms fixed, the edge atoms are

then adjusted and relaxed for 200 more GTBMD steps. The GTBMD relaxation of 1000

MD steps at each strain value is sufficient to reduce the forces on atoms in the deformed

region to below 0.02 eV/A. At the elastic limit (12% compression for an (8,0) CNT), the

compressed tube is relaxed for 5000 GTBMD steps, during which a spontaneous plastic

collapse of the tube is observed.

The compressed nanotube energetics during the collapse are also analyzed with an ab-

initio density functional theory (DFT) using pseudo-potential method. [24] Plane wave basis

sets with a cutoff energy of 40 Ry is used for the expansion of the single electron wave

functions (Kohn-Sham orbitals), and the local density approximation (LDA) is used for the

exchange-correlation energy functional. Up to 36,000 plane wave basis functions are used to

expand each electronic wave function for accurate energetics estimation.

The strain energy per atom is calculated as the difference in the total energy per atom

of the strained and unstrained tube, and is shown in Fig. la, as a function of percentage

strain. For comparison, we also show the strain energy calculated the same, but for classical

MD simulations employing the Tersoff-Brenner model of many-body atomistic interactions.

[14] Parabolic fits to two sets of data in the linear elastic response regime can be used to

compute the Young's Modulus for the nanotube. The calculated value from the GTBMD

method is 1.3 T Pa (using 3.4A for the CNT thickness) for the (8,0) nanotube considered.

For low value of compressive strain (_<8%), before any structural deformation occurs, the

classical MD values are also in reasonably good agreement with the quantum GTBMD values

as shown in Fig.la. Significant differences, however, start to occur for compressive strain

larger than 8%. First, the GTBMD curve (Fig.la) shows that the (8,0) nanotube can be

compressed up to 12 (+/- 0.25)% before any structural deformation occurs. The classical

MD simulation for the same nanotube, however, shows the structural deformation to start

between 8 and 9%. Moreover, the nature of the structural deformation in the two cases is

also significantly different. The structural deformation at 12% strain (as shown in Fig.lb)

in the quantum GTBMD method is completely spontaneous and leads to plastic collapse



of the tube. On the other hand, the structural deformation in the classical MD method

observed between 8 and 9% strain, resulting in the formation of symmetric-pinching mode,

is completely elastic. [25]

The microscopic details and mechanism of the structural collapse.are discussed next. At

12_0 strain, as shown in Fig.2a, structural deformation starts asymmetrically at two locations

in the tube with small changes in an otherwise circular cross-section. Strain relaxation in

the center (highly strained) region of the tube forces the atoms, at the locations of the

deformations, to gradually collapse inward as shown in Figs.2b and c. Four-fold coordinated

bonds are formed and the structure is further 'pulled' inwards by the newly formed (sp 3

type) bonds (Fig.2d). The energetics (shown in Fig.lb) of the spontaneous inward collapse

as discussed above show that there is net energy release for this process. As discussed

below any local activation energy barrier is overcome by large release of strain energy in the

uncollapsed section.

The structural changes during the CNT collapse are further illustrated in a radial dis-

tribution function (RDF) analysis that is shown in Figs. 3a and b. For simplicity, only

the RDF peak around first neighbor shell radial distance is discussed. At 0% compression

there is a single peak around equilibrium carbon-carbon (sp 2 type) bond distance of 1.42 ./k

in unstrained graphene sheet. At 4°-/0compression a second peak, representing compressed

bonds along the tube axis, develops at about 1.37 _. The original peak with a reduced

magnitude also shifts to a lower value of 1.41 _. This indicates that most of the axial strain

is accommodated only in the bonds parallel to the tube axis. The remaining strain has been

used up in the opening of bond-angles and in increasing the tube radius as defined by the

Poisson ratio. At 8% strain the second peak, representing strained bonds parallel to tube

axis, shifts to about 1.33 A, while the first peak representing unstrained bonds does not

move much. At 12% strain the structural collapse occurs (Fig. 2d) and the second peak,

representing strained bonds parallel to the tube axis, vanishes. The original peak, repre-

senting mostly the uncollapsed section, is also significantly reduced in magnitude. Many

smaller peaks (like a background noise type distribution of bond lengths) in the range 1.34



- 1.60 A are observed. This signifies a break-down of the starting (strained or unstrained)

sp 2 type bonding structure.

Contributions to the over-all bond length distribution due to collapse are further analyzed

in Fig.3b. Dotted line in the background shows that the uncollapsed section still preserves

the two peak structure. The original peak representing non-axially aligned non-strained

bonds at around 1.42 A and the strained (but split) peak around 1.36 A representing axially

aligned strained bonds in the uncollapsed section. This shows that the strain in the uncol-

lapsed section has reduced from 12% to 4%. The dashed line in the middle representing the

collapsed section shows a wide distribution (1.42 - 1.55 A) of bond lengths. The lower edge

near 1.42 A represents sp 2 type bonds of the original but collapsed graphene tube while the

upper edge near 1.55 A represents compressed sp a type bonds of diamond like reconstruction

that is shown in Fig. 2d.

The nature of the driving mechanism for the plastic failure is investigated next by ex-

amining the ab initio total energy changes as the tube collapses. The collapsed part (left

section in 2d.) contains six 4-fold coordinated atoms that induce a significant reduction

(from 7.4 A to 6.1 A) in the axial length of this section. The ab initio energetics reveals

that there is a net 3.0 eV energy increase in the collapsed section, and a local activation

barrier of about 8.4 eV to the collapse. Comparing the energetics of the same section with

the value at the beginning of the collapse leads to an effective spring constant of K -- 5171.6

eV (AE = Ke2/2). This corresponds to a Young's modulus of 1.4 T Pa before collapse and

a net length reduction of about 1.3 A due to the collapse. The accumulated axial strain in

the uncollapsed section, on the other hand, is simultaneously reduced, providing the driving

force for the observed mechanism as well. The estimated strain energy release in the uncol-

lapsed section (_ 50 eV, estimated from the effective spring constant) for the uncollapsed

section is large enough to overcome the estimated local activation barrier and deposit an

extra strain energy of magnitude 3 eV in the compressed collapsed section. The remaining

released strain energy of the uncollapsed section is dissipated in the form of heat and is



removedby the GTBMD energy minimization process. Thus there is a net strain energy

releasethrough the local collpasingprocess.

Even though our analysis is basedon simulations for short length CNTs (320 atoms

containing 20 units of N-16 each), we can generalize it to longer length CNTs. Assuming

that the CNT could experience a similar collapse, and that the collapsed part is compressed

by the same (i.3 A) amount with an equivalent release of strain in the uncollapsed part,

we can estimate the strain energy released for a longer uncollapsed part. The strain on the

uncollapsed part is 12% before the collapse and is reduced by 1.3/N/8.7 due to collapse

elsewhere. Where there are 4N equivalent sections of nanotubes in the middle with each

section measuring 8.7 It before the collapse. The residual strain on the uncollapsed part is

= 0.12 - 1.3/8.7/N, and the net strain energy change is -37.2*(2.5N-1.6)/N eV, where we

have used the calculated spring constant given earlier. The longer (8,0) CNT, in the large N

limit, releases 93 eV per each plastic collapse of the nature described above. The net strain

energy release (93 eV) in the uncollapsed section is thus still large enough to overcome any

local activation energy barriers for collapse or even produce fracture without any buckling.

[18]

In the above analysis we have assumed that the mechanism of the collapse remains un-

changed as the tube length increases. A simple estimation of the Euler buckling stress for

the length (_ 4 nm) of the tube used in this simulation shows that the critical stress needed

for buckling or other morphological deformations is about twice as much as the value at

which the tube collapsed in our work. For longer tubes, however, the needed critical stress

for Euler buckling will be less, and could compete with the above collapsing or plastic

deformation mechanism. Similarly, a larger diameter tube of similar length could also be

compressed to first undergo Euler buckling before neighboring carbon atoms start to interact

strongly causing the inward collapse of the structure with sp 2 to sp 3 type reconstruction.

This explains the observation of both buckling of thick tubes and collapse/fracture with-

out buckling of thin tubes in experiments. [18] The critical lengths and diameters of the

tube, above which buckling or other morphological deformations might dominate over the



collapsingmechanism,will be investigatedin future.

In summary, wehavepresenteda novelnano-plasticmechanismof compressednanotubes

where local tetrahedral bonds (sp3) of carbon atoms form at the location of the collapse.

This is also reminiscentof graphitic to diamond-like phasetransitions observedin high com-

pressionpressurecells (_ 150G Pa) in the coreof irradiated and annealedbuckyonion. [19].

In our case,the mechanismis driven by the releaseof large amount of accumulatedstrain in

the uncollapsedsection through structural relaxation. The computed critical stress (_ 153

G Pafor 12%compressedtube) is in goodagreementwith the the experimentally estimated

range of values reported by Lourie et. al., for thin nanotubes. [18] Most significantly, our

work considerably lowersthe elastic limit for free standing thin compressednanotubes (to

about 12%) as compared to the 15%and higher valuescomputedby classicalMD atomistic

simulations. [7,9] Investigations of the effect of tube diameter and chirality on the elastic

limit and the abovemechanismof plasticity are currently underway.
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FIGURES

FIG. 1. (a) Strain energy as a function strain in an axially compressed (8,0) nanotube. Filled

circles are for compression computed with the quantum GTBMD method where as stars are for

the values computed with classical MD method. Inset (b) shows the strain energy minimization at

12% strain as a function of number of GTBMD relaxation steps.

FIG. 2. Plastic collapse of of 12% compressed (8,0) carbon nanotube shown at points 1, 2, 3

and 4 in a, b, c, and d, respectively.

FIG. 3. Radial distribution function (RDF) near first neighbor shell as a function of radial

distance. (a) RDF at 0, 4, 8, and 12% compressed and GTBMD energy minimized tube, and (b)

contributions to 12% compressed tube RDF from central uncollapsed and two collapsed sections

of the tube.
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